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Calculation of the Aqueous Diffusion Layer Resistance for
Absorption in a Tube: Application to Intestinal Membrane
Permeability Determination

Jim H. Kou,! David Fleisher,?> and Gordon L. Amidon®

INTRODUCTION

The intestinal permeability of a compound is commonly
estimated by a single-pass perfusion technique. Assuming
that there is no radial convection due to water transport, the
overall diffusional resistance to absorption can be visualized
as a composite of two resistances in series, i.e.,
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The single-pass intestinal perfusion technique has been used extensively to estimate the wall perme-
ability in rats. The unbiased membrane parameters can be obtained only when the aqueous resistance
is properly accounted for. This aqueous resistance was calculated numerically from a convective
diffusive mass transfer model, including both passive and carrier-mediated transport at the intestinal
wall. The aqueous diffusion layer resistance was shown to be best described by a function of the form,

. K D E
Pi, 7' = AG."® + BGZ© [P: <E—”'> + P,‘:,]
o

where G, P¥, P}, K,, and C, are, respectively, Graetz number, passive permeability,
carrier-mediated permeability, Michaelis constant, and the drug concentration entering the tube.
Asterisked are dimensionless quantities obtained by muitiplying the permeability constants with
R/D, where R and D being radius and drug diffusivity, respectively. A, B, C, D and E were
obtained by a least-squares nonlinear regression method, giving values of 1.05, 1.74, 1.27, 0.0659,
and 0.377, respectively, over the range of 0.001 < G, < 0.5, 0.01 < P}, < 10, 0.01 = P} =< 10,
and 0.01 < K, /C, < 100. This aqueous resistance was found to converge to those calculated from
Levich’s boundary layer solution in low Graetz range, indicating the correct theoretical limit. Using
an iteration method, the equation was shown to be useful in extracting the intrinsic membrane
permeability from the experimental data.

KEY WORDS: aqueous resistance; laminar tube flow; diffusion; intestinal absorption; carrier medi-
ated transport; permeability; numerical method.

2 , Cn 5
2«RL " ¢, 2

Pesr =
where C,/C, is the measured fractional exit concentration,
and Q, R, and L are flow rate, radius, and length, respec-
tively (7). By separating out the aqueous contribution, the
true wall permeability can be obtained. In the most general
case, P, is expressed by passive and carrier-mediated mech-

)

where P g, P,,, and P, denote effective, aqueous, and wall
permeabilities, respectively. The effect of the aqueous resis-
tance layer, also known as the unstirred or stagnant layer,
has been clearly delineated both experimentally (1,2) and
theoretically (3-6). P4 can be calculated from experimental
data according to a complete radial mixing model,
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anisms in parallel, i.e.,

Jmax

Py g s G

+ P 3

where J,,..,, K,,, and P, are the maximum flux, Michaelis
constant, and passive permeability, respectively. These
quantities can be obtained by a nonlinear regression accord-
ing to a variant form of Eq. (3) (9). If one ignores the aqueous
layer, the membrane parameters obtained are biased, where
K,, is always overestimated and P, and J _,, underesti-
mated. Therefore, it is necessary to either eliminate or ac-
count for the effect of this aqueous resistance in order to
arrive at the true membrane parameters.

Different approaches have been used to either minimize
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Calculation of Mean Aqueous Resistance in Perfused Intestine

or account for the effect of this layer, such as maximizing the
perfusion flow rate or simultaneous perfusion of fluid and air
to introduce turbulence and reduce the concentration gradi-
ent in the lumen (1). Although these techniques have been
shown to be effective in reducing the influence of the aque-
ous layer, the extent of this reduction is still unknown. Al-
ternatively, one can account for the aqueous layer resistance
theoretically through proper modeling of the hydrodynamics
in the lumen. The advantage of the theoretical approach is
that it allows unambiguous quantitation of the aqueous re-
sistance, defined as 1/P,,, without resorting to an unknown
“‘unstirred”’ layer thickness to fit the data.

Methods based on mass transport modeling to account
for the aqueous resistance were previously developed (8,9).
Based on the solution to a convective mass transfer problem
with axial laminar flow in a straight tube, Elliott ez al. (8)
developed an approximate method for calculating the mem-
brane permeability of passively absorbed compounds. The
method is restricted to the passive diffusion at the intestinal
wall because the solution scheme cannot accommodate non-
linear boundary conditions, such as one involved in Michae-
lis Menton absorption. Subsequently, Johnson and Amidon
used the boundary layer approach similar to the one used by
Levich (12) to solve a laminar tube flow problem including
both passive and carrier-mediated components in the bound-
ary condition (9). Upon linearizing the axial parabolic veloc-
ity profile, a solution was obtained analytically on semiinfi-
nite coordinates. The aqueous resistance derived from the
solution is expressed by
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L
where R, L, D, and x are radius, length, aqueous diffusivity
of the drug molecules, and axial coordinate, respectively;
the Graetz number, G, is defined by

DL
-39

where Q is the volume flow rate in the tube. To improve the
accuracy and extend the applicability of this method, the
solution was adjusted by adding a parameter, A, to the aque-
ous resistance and matched to Elliott’s solution in the first-
order case. This results in the modified boundary layer so-
lution (MBLS), and the aqueous resistance obtained is ex-
pressed as

®)

R
P = A 5 G,? (6)
with
A = 100G, + 1.01, 0.004 < G, < 0.01
A = 4.5G, + 1.065, 0.01 < G, < 0.03
A = 2.5G, + 1.125, 0.03 < G,

While the aqueous resistance estimated by this method has
been used extensively in calculating member permeability,
several issues have not yet been resolved. First, in the
MBLS scheme, the aqueous resistance is found to be inde-
pendent of the membrane parameters, while Elliott’s solu-
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tion indicates that there is such a dependence. The signifi-
cance of this dependence needs to be established. Second,
the aqueous resistance of Eq. (6) has not been rigorously
defined. Third, the accuracy of the MBLS has not been ver-
ified. To address these issues, a convective diffusive tube
flow model was set up to analyze the concentration distri-
bution within the tube interior. From these results, the aque-
ous resistance was quantitated and analyzed.

THEORY

The experimentally measured P, is an averaged quan-
tity over the entire length of the tube as evidenced in Eq. (2).
Consequently, it follows that the P_, will necessarily be an
averaged value as well. The purpose of the following deri-
vation is to define this averaged quantity unambiguously. At
steady state, the flux J(z) through the intestinal membrane
and aqueous boundary layer are equal, i.e.,

J@2) = Paq(z)[cc(z) — Cwl(2)] = Py(2)Cul(2) )

where sink conditions are assummed on the serosal side of
the intestinal membrane. Rigorously, J, P,,, and P, are z
dependent. C_ and C,, are the concentrations at the center
axis and tube wall, respectively. Since a spatially averaged
quantity is sought, a mean P_aq can be defined by equating the
integral membrane flux to the flux through a reference mean
concentration gradient in the aqueous phase, i.e.,

fA PyCwdA = APaq(Cc - Cw) (8)
where the integral is evaluated over the intestinal membrane
surface A. More generally, P, is considered to be a combi-
nation of passive diffusion and carrier-mediated mechanisms
in parallel as indicated in Eq. (3). Substituting Eq. (3) into
Eq. (8) and setting A = 2wRL, the following expression for

P, is obtained:

L JmaXCW >
— fo (—Km +c + PnCu)dz ;
2 [LC. - T ©)

The quantities C_ and C,, yet to be defined, are the refer-
ence concentrations at the center axis and intestinal wall,
respectively. They are simply taken to be the averages of
their respective axially dependent quantities, i.e.,

foL Cw dz
C.= - (10)

foL C. dz
Cy = - (11

It is apparent that, in order to evaluate ITa;, one needs to
know the concentrations at the wall and center axis. These
quantities can be obtained by solving a mass transfer model
with proper hydrodynamics incorporated.

The equation of continuity at steady state with axial
convection and radial diffusion in cylindrical coordinates can
be written as
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where V_ is the axial velocity profile. Since the model is not
intended for analyzing the water transport, the radial con-
vection term is not included in Eq. (12). It has been shown
previously that laminar flow is the most appropriate model to
be used for the perfusion system (10), hence the following
expression is used:

r 2
V.= Vmax[1 - (E) } (13)

Since the axial diffusion term was shown to be unimportant
when compared to the convection term (8), it is not included
in Eq. (12). The boundary conditions for the single-pass per-
fusion experiment are

£= , r=20, O=szsL (149
ar

—D£=—J—"1£+Pmc r=R, O0s<zs<L (15
ar K,+C ’ ’
C = C,, z=0, 0=sr=<R (16)

The system can be simplified by dedimensionalization by
substituting 8 = C/C,, ? = z/L, and # = r/R into Eq. (12).
The transformed equation then becomes

1-#00 130 0%

—=-= 17
G, oz ‘ot o a7

with the boundary conditions,

B, F=0, 0<z<1 (g

aF

8 _ _( Jthar/Co
#  \Kn/Co + 0
0=1, 2=0,

+P:;,>e, F=1, O0=zi<1 (9
0s?¢<s1 (0

The Graetz number, G,, defined as wDL/2Q, is a dimension-
less number which incorporates system dimensions and hy-
drodynamics. It is interpreted as the ratio of the mean axial
residence time, wR2L/Q, to the mean radial diffusion time,
2R?/D. Therefore, G, determines the importance of axial
convection relative to radial diffusion. J%,, and P¥ are the
normalized quantities obtained by multiplying J,,, and P,
by R/D, respectively. The solution of the problem is clearly
a function of spatial variables as well as G, J, .., K,,., Py,
and C,. As such, it implies that P,,, as defined in Eq. (9),
should also be a function of G, and the membrane parame-
ters.

RESULTS AND DISCUSSION

Numerical Accuracy

The nonlinearity in the boundary conditions precludes
an analytical solution. The problem was then solved via a
numerical finite-difference method. Discretization following
the Crank Nicholson scheme results in a system of nonlinear
algebraic equations which are solved by standard routines in
the IMSL Mathematics Library. The solution obtained is the
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steady-state concentration profile in the intestinal lumen.
The accuracy of the numerical solution was checked against
Elliott’s analytical solution to the first-order boundary con-
dition case, i.e., with passive absorption at the wall (8). Ta-
ble I is a comparison of the steady-state cup-mixing concen-
tration, C,,/C,, defined as

joh joR V.Cr drdz

jo o jo R Vr drdz

Cm
Co

at various G, values. Since Elliott’s solution is an infinite
series, the values presented here are the approximation
based on the first five terms. The numerical solution is cal-
culated with a 20 x 20 grid mesh. Except at the high perme-
ability and large G, values, the numerical result is in excel-
lent agreement with the exact solution, and the error is gen-
erally well below 1%.

Calculation of Mean Aqueous Resistance

Figure 1 illustrates a typical situation in a perfused in-
testine showing the axial dependence of C_/C(2), C,/C(2),
and /P (z) with P}, = 1 and G, = 0.05. Here C_/C, and
C,/C, are the dimensionless concentrations at the center
axis and intestinal wall respectively; P%, is the dimensionless
aqueous permeability obtained by multiplying P,, by R/D.
Figure 1 shows that C,/C(z) decreases along the axial di-
rection. Therefore, it is the concentration gradient, C_/C (z)
- C,/C, (z), which is responsible for the aqueous resis-
tance. With the concentration profile known from the nu-
merical solution, one can evaluate the aqueous resistance,
Pi~ (2), according to Eq. (7). It is shown in Fig. 1 that this
resistance increases axially. If one defines the aqueous per-
meability, P,,, as D/3, where 3 is the diffusion layer thick-
ness, it is readily shown that the dimensionless aqueous re-
sistance, P:q(z)_l, is 8(z)/R. Therefore, the aqueous resis-

Table I. Comparison of C,/C, Calculated from the Exact and Nu-
merical Solutions to Eqgs. (12)-(13) with Passive Absorption at the
Wall, i.e., Egs. (14(16) Assuming J_ ., = 0

@1

G, Exact® Numerical % Error’
Px = 001
0.001 0.9999 1.0000 (-0.01)
0.005 0.9988 0.9998 (—0.10)
0.01 0.9986 0.9996 (-0.10)
0.05 0.9970 0.9980 (—0.10)
0.1 0.9951 0.9961 (-0.11)
0.2 0.9911 0.9922 (-0.11)
Pr =10
0.001 0.9763 0.9801 (—0.39)
0.005 0.9283 0.9300 (—0.18)
0.01 0.8808 0.8831 (—0.26)
0.05 0.6441 0.6501 (—0.93)
0.1 0.4626 0.4705 (—1.71)
0.2 0.2448 0.2531 (—-3.39)
¢ See Ref. 8.

® Defined as [(exact — numerical)/exact] X 100%.
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Dimensionless coordinate

z/L

Fig. 1. A typical concentration and aqueous resistance profile in a
perfused intestine: C/C,, C,/C,, and 1/P}, are dimensionless con-
centration at the center of the intestine, dimensionless concentration
at the intestinal wall, and aqueous resistance in the lumen, respec-
tively (P%, = 1 and G, = 0.05).

tance plotted in Fig. 1 is actually the fractional diffusion
layer thickness. The plot shows that this diffusion layer pen-
etrates deep into the center of the tube under the flow and
absorptive condition. In applying Eq. (1), it is understood
that the aqueous resistance term is an spatially averaged
quantity. As mentioned, it has not been made clear in the
literature as to how this average quantity is obtained. The
definition in Eq. (9) provides the missing link. As defined,
P—aq is the mean value that gives the correct overall steady-
state absorption rate. Figure 2 is the P;,~ ! plotted against G,
for passive absorption at the wall with P% = 0.1, 1, and 10.
Plotted in the graph also is the P_.j:q_‘ calculated from the
MBLS, i.e., Eq. (6). The numerical result demonstrates that
the PZ,~' is a function of not only G, but also P¥. This is
consistent with Elliott’s solution, where C_/C, is dependent
on P¥. In case of carrier-mediated mechanism at the wall,
the dependence should also be extended to include J% ., X,,,,
and C,,. Figure 3 is the P% ~' versus G, plot showing the P}
and K, /C, dependence. Here K,,/C, indicates the relative
saturation of the carrier binding sites and P¥ is the carrier
permeability, defined as J%,,/K,,, which is essentially the
dimensionless first-order permeability when C, << K,,..
These curves are obtained by solving Egs. (17)—(20) in the
absence of a passive mechanism, i.e., P% = 0. The depen-
dence of Pi,~' on K, /C, is apparently rather weak. It
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Fig. 2. A comparison of the mean aqueous resistance as a function
of G, calculated from the modified boundary layer solution (curve
M) and the numerical solution with a P value of 10 (curve a), 1
(curve b), and 0.1 (curve c), respectively.
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Fig. 3. A comparison of the mean aqueous resistance as a function
of G, calculated at X, /C, values of 100 (graph I), 1 (graph II), and
0.01 (graph III). Curves a, b, and ¢ represent P} values of 10, 1, and
0.1, respectively.

should also be noted that curves Ia, Ib, and Ic (Fig. 3) are the
same as curves a, b, and c¢ (Fig. 2), respectively. This is
expected because in both cases the first-order absorption
kinetics are operative at the wall. If C is increased such that
K, /C, = 0.01, i.e., in the zero-order region, IT*Q“ for all
three values of P%, 0.1, 1, and 10, collapses into one curve as
shown in Fig. 3, III. The results thus demonstrate that the
aqueous resistance is clearly a function of G,, J},.,, K,,/C,,
and P¥ in the most general case. The dependence grows as
G, is increased.

Accuracy of the Modified Boundary Layer Solution

In comparing the numerically calculated IT*Q ~1 with
those calculated from MBLS, Fig. 2 shows that the latter is
an approximation to the values calculated from the exact
model, i.e., Egs. (17)(20). Over the range of G, of practical
interest, some differences are observed in P%, . As aresult
of this difference, the error in P¥ can be estimated as fol-
lows: the aqueous resistance PZ, .~ with error €,, can be
defined by,

1
— =+ €aq) p—
P P

(22
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and the P¥, _ determined from Eq. (1) will be

PT( — px
Py = —2—1 (23)
ngfpg‘q,e

It can be shown that the error, €, in the estimated P}, _ is

Py - P\’I;/,e €aq

€w = =
¥ P Q — €y

(24

where () is the ratio of wall resistance and aqueous resis-
tance, P%,~'/P%,~'. As an example, €, at G, = 0.1 are
0.122, 0.088, and 0.019 for P} values of 0.1, 1, and 10, re-
spectively; the resulting €,, in respective order, are
—0.0070, —0.054, and —0.13. Since ¢,, is dependent on ()
and ¢,,, as shown in Eq. (24), this error can be effectively
controlled by making G, small. The net effect is to make the
Q) large while reducing €, . If G, is reduced to 0.01, ¢, be-
come —0.0016, —0.014, and —0.056 for P% values of 0.1, 1,
and 10, respectively. Therefore, by careful control of the
hydrodynamics, i.e., aqueous resistance, the MBLS solution
can be used to obtain a good estimation of P¥.

Analysis of the Numerically Calculated Mean
Aqueous Resistance

In order to use the numerically calculated aqueous re-
sistance, it is advantageous to find a regressed function to
represent the results. It was found that a function of the
following form gives an excellent fit to the numerical values,

o Km D E
Pi; 7' = AG,'® + BGS [P: o)t P*m} 25)

o

where parameters A, B, C, D, and E are to be determined by
regression analysis. The estimated parameters are summa-
rized in Table II, with the range of applicability of

0.001 =G, <05
001 <=PL<10
001 = P:¥< 10
0.01 = K,,/C, < 100.
The result indicates that the P¥, ~' has a weak dependence
on the membrane parameters and a relatively strong depen-
dence on the G, value. Table III tabulated the numerical

F;‘; ~1 values used in the regression and the percentage er-
rors in the regressed value calculated by Eq. (25). Except in

Table II. Parameters of Eq. (25) Estimated by Least-Squares Non-
linear Regression

Estimated 95% Confidence
Parameter value® SE interval
A 1.05 0.0235 (1.00, 1.10)
B 1.74 0.0508 (1.64, 1.84)
C 1.27 0.0630 (1.14, 1.39)
D 0.0659 0.00482 (0.0563, 0.0754)
E 0.377 0.0556 (0.267, 0.487)

“ The regression routine used is PCNONLIN, Statistical Consult-
ants, Inc.
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the large G, range, the regressed function gives P—:q ~1 val-
ues within 5% of the numerical values.

The functional form and the magnitude of the exponents
of Eq. (25) suggest that there is a limiting behavior of G,
dependence. At small G, the second term in Eq. (25) drops
out, leaving only a cube root dependence on G,. Figure 4 is
a plot of PX, ~' versus G,'” showing this limiting behavior.
Plotted also in Fig. 4 is the PZ, ~' calculated from Levich’s
solution. Essentially the Levich solution is a boundary layer
solution to Eq. (12) with a sink condition at the wall (11).
Using the definition in Eq. (9), the P%, ~! calculated from
Levich’s solution is

P, 71 =0995G,"? (26)

Details of the Levich model and derivation of Ff; 1can
be found in the Appendix. Figure 4 shows that the P}, -1
calculated from the numerical results agrees excellently with
those of Levich in the small G, limit. This is the limit of
entrance region where the thickness of the diffusion bound-
ary layer is considerably smaller than the tube radius. There-
fore, the linearization of the parabolic velocity profile is a
good approximation. As the fluid moves further away from
the entrance and into the tube, i.e., when G, gets larger, the
diffusional boundary layer grows farther into the lumen and
the linearized velocity profile overestimates the convection
effect. The extent of overestimation can be calculated by
defining the error €,

Vé" V.
v

Z

€ = 27)
where V, is the parabolic velocity profile as defined in Eq.
(13) and V.’ is the linearized profile used in Levich’s model
[see Eq. (A3)]. Putting Eqgs. (13) and (A3) (see Appendix)
into Eq. (27), the error €, is (1 — #?/(1 — #%). Therefore, the
errors are 5.26% at 7 = 0.9, 33.3% at 7 = 0.5, and at the
worst case, 100% at # = 0 (center axis). The effect of the
overestimated axial convection is overestimating C,,, and
this results in an underestimated P%, ~ ', as evidenced in Fig.
4. The departure of curves a, b, and ¢ (Fig. 4) from curve L
indicates that the boundary layer assumption is no longer
valid under these flow and absorptive conditions at the wall.
Since the divergence occurs at a G, value as low as 0.001 and
a typical experimental G, value can be as high as 0.1, the
boundary layer approach may not give an accurate P—;fq -1
estimation. As mentioned, the model developed in this work
is most general, requiring no simplifying assumptions; there-
fore, the P_;kq ~! derived from its solution will have a full
range of validity.

In practice, the membrane permeability can be calcu-
lated from the experimental C_/C, and G, values by an it-
erative method using Egs. (1), (2), and (25). As an example,
the dimensionless passive permeability of phenytoin is cal-
culated from the experimental data as illustrated in Table IV
(12). Without any prior knowledge of the permeability of
phenytoin, an initial guess of P¥ = 100 is used to estimate
the P%, ~' by Eq. (25). The 1/P¥y term is calculated from the
experimental C_/C, and G, values using the dimensionless
form of Eq. (2), i.e., 1/P¥x = —4G [€n(C,/C)] ™. The 1/P%
is then calculated by Eq. (1). This P is then used to make a
new estimate of P—;‘q ~!and a new P* can be calculated. The
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Table III. Table of IT;‘;“ Calculated Numerically from the Model and Errors in Regressed Values

G, * = 0.01 * = 0.1 Pr =1 Pr=10
K,/C, = 100 and P%, = 0
0.001 0.1027 (—2.71)° 0.1025 (—2.94) 0.1033 (-2.19) 0.1053 (—0.29)
0.005 0.1735 (—4.68) 0.1742 (—4.43) 0.1755 (—3.84) 0.1812 (~0.79)
0.01 0.2225 (—3.73) 0.2232 (~3.71) 0.2255 (—3.01) 0.2338 (—0.25)
0.025 0.3153 (- 1.76) 0.316 (—2.24) 0.3208 (— 1.51) 0.3341 (—1.64)
0.05 0.4174 (—0.53) 0.4189 (—1.43) 0.4278 (—0.76) 0.4467 (— 1.89)
0.075 0.4968 (—0.11) 0.4991 (—1.42) 0.5122 (—0.84) 0.536 (—1.4)
0.1 0.5656 (—0.02) 0.5688 (—1.7) 0.5865 (—1.16) 0.615 (—0.71)
0.2 0.7973 (—0.59) 0.8054 (—3.4) 0.8468 (—2.57) 0.8983 (—1.32)
0.5 1.4095 (— 1.67) 1.4371 (- 6.55) 1.6168 (—1.78) 1.7616 (—0.97)
K,/C, = 1and P*, = 0
0.001 0.1029 (—2.48) 0.1029 (—2.51) 0.103 (—2.45) 0.1042 (—1.32)
0.005 0.174 (—4.28) 0.1741 (—4.36) 0.1745 (—4.29) 0.179 (—1.86)
0.01 0.2229 (—3.34) 0.223 (—3.56) 0.2237 (—3.56) 0.2314 (—0.47)
0.025 0.3154 (- 1.27) 0.3156 (—1.83) 0.3172 (—2.04) 0.332 (- 1.71)
0.05 0.4177 (—0.38) 0.418 (—0.68) 0.4213 (—1.19) 0.4456 (~2.89)
0.075 0.4972 (- 1.15) 0.4977 (—0.34) 0.503 (—1.11) 0.5357 (—3.06)
0.1 0.5662 (—1.58) 0.5668 (—0.33) 0.5744 (- 1.31) 0.6155 (—2.95)
0.2 0.7989 (—2.15) 0.8005 (—1.08) 0.8207 (—2.48) 0.9013 (—2.56)
0.5 1.407 (-2.75) 1.415 (—2.89) 1.527 (—2.02) 1.774 (=5.5)
K, /C, = 0.01 and PX, = 0
0.001 0.1029 (—2.46) 0.1029 (—2.49) 0.1029 (~2.52) 0.1029 (—2.56)
0.005 0.174 (—4.18) 0.174 (—4.31) 0.174 (—4.46) 0.174 (—4.64)
0.01 0.2229 (—3.15) 0.2229 (—3.4) 0.2229 (—3.69) 0.2229 (- 4.02)
0.025 0.3154 (—0.86) 0.3154 (—1.42) 0.3154 (—2.06) 0.3154 (—2.82)
0.05 0.4176 (—1.11) 0.4176 (—0.1) 0.4176 (—1.08) 0.4176 (—2.45)
0.075 0.4972 (-2.2) 0.4972 (—0.78) 0.4972 (—0.87) 0.4972 (—2.79)
0.1 0.5661 (—2.89) 0.5661 (—1.09) 0.5661 (—0.99) 0.5661 (—3.42)
0.2 0.7987 (—4.39) 0.7987 (—1.33) 0.7987 (—2.24) 0.7987 (~6.38)
0.5 1.4063 (- 6.82) 1.4063 (—1.26) 1.4063 (—5.21) 1.4067 (—12.7)
G, = 0.01 * = 0.1 P =1 P =10
Pr=0
0.001 0.1029 (—2.48) 0.1029 (—2.51) 0.1033 (—2.16) 0.1053 (—0.26)
0.005 0.174 (—-4.28) 0.1742 (—4.3) 0.1755 (- 3.7) 0.1812 (—0.63)
0.01 0.223 (—3.29) 0.2232 (—3.47) 0.2255 (- 2.73) 0.2338 (—0.56)
0.025 0.3154 (—-1.27) 0.316 (—1.7) 0.3209 (—0.86) 0.3341 (—2.33)
0.05 0.4178 (—0.41) 0.4189 (—0.46) 0.4279 (~0.37) 0.4467 (—3.13)
0.075 0.4974 (—1.19) 0.4991 (—0.06) 0.5124 (—0.75) 0.536 (—3.12)
0.1 0.5664 (— 1.61) 0.5688 (—0.03) 0.5867 (—0.82) 0.615 (—2.87)
0.2 0.7994 (—2.21) 0.8054 (—0.47) 0.8471 (-0.71) 0.8983 (—2.24)
0.5 1.4095 (—2.93) 1.438 (—1.24) 1.618 (—3.72) 1.8433 (—9.05)

“ Numbers in parentheses are percentage errors in regressed values, calculated by Eq. 25, relative to
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numerical values.

iteration continues until P} converges. As shown in Table
IV, the convergence is rather fast regardless of the initial
estimate of P, .. This iteration method can also be applied to
the case of Michaelis Menton absorption at the wall.

CONCLUSIONS

In summary, the aqueous resistance in a perfused tube
was unambiguously defined and calculated at various flow

and absorptive conditions. The calculation is based on the
numerical solution to the exact convective diffusive mass
transport problem without any simplifying assumptions. The
results demonstrate that the P¥, ~' is a function of G, as well
as membrane parameters, namely, PX, J¥ . and K, /C,.
These numerically calculated aqueous resistances at various
G, and permeability values was fitted to a functional equa-
tion [Eq. (25)], and the result indicates that the dependence
on permeability and Michaelis constant is relatively weak
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Fig. 4. A comparison of P* -t calculated from the numerical

(curves a, b, and ¢) and Levxch (curve L) solutions. Curves a, b, and
¢ are reproduced from Fig. 3, I.

when compared to G,. This equation is found to converge to
the Levich limit only in the low-G, value region, thus indi-
cating the limitation of the boundary layer approach. Since
Eq. (25) is derived from an exact model, it should have a full
range of validity. The practical utility of Eq. (25) in extract-
ing true membrane permeability was also demonstrated by
the phenytoin example.

APPENDIX

Derivation of P—;‘q ~1 from Levich’s Solution to a Convective
Diffusive Tube Flow Problem

Levich’s problem concerns flow in the interior of a tube
in which the tube wall acts as a sink to the solute of interest
(11). The steady-state concentration of the solute is gov-
erned by

D
S ra%) @
where V, is a laminar velocity profile,
r\2
V,= Vmax[l - (E) ] (A2)

Table IV. An Iteration Scheme Using Egs. (1), (2), and (25) to Cal-
culate the True Membrane Permeability of Phenytoin from Experi-
mental Data (12)

Iteration G, CulCo VUPYE  PEE  1PEE  Pi?
1 0.0410 0760  0.598 100 0.533 15.5
2 0.0410 0760  0.598  15.5 0.447  6.63
3 0.0410 0760  0.598 6.63 0424 575
4 0.0410 0.760  0.598 575 0420 5.64
5 0.0410 0.760  0.598 5.64 0420 5.63
1 0.0410 0.760  0.598 0.001 0364  4.29
2 0.0410 0760  0.598 429 0414 545
3 0.0410 0.760  0.598 545 0419 5.6l
4 0.0410  0.760  0.598 561 0420 562
5 0.0410  0.760  0.598 562 0420  5.63

@ Calculated by [-4G,/In(C,,/C,)].

b P} . — P% except that the first value is an initial guess.
€ Calculated by Eq. (25) with P} = 0, and P}, = P} ..

4 Calculated by Eq. (1).

Kou, Fleisher, and Amidon

Taking a boundary layer approach assuming diffusion occurs
only over a small distance from the wall, the problem is
transformed onto semiinfinite coordinates with a new radial
variable y defined as R — r. For small y, the laminar profile
can be approximated by,

Ve = Vi (2_y> (A3)
R
and the PDE becomes

211“:—03—; =D 2;5 (Ad)

with the boundary conditions
C=0C, Y-, O0=sz=<L (A5)
Cc=0, y =0, O0=sz=<L (A6)
C=Co, 2=0, 0=y (AT)

Equation (A4) is solved by introducing a new variable 7,

x~13 (A8)

Upon solving the system, the diffusional flux, J, through the
wall is given by

P v 113
J= D<5>y:0 = 0.67C0D( D“;‘:) (A9)
Using Eq. (8), the 7’; is determined by
fA JdA
Py = m (A10)
Putting C, = C,, C,, = 0, A = 2wRL and substituting Eq.

(A9) into (A10), the result is P,, = 1.005 (D/R)G,~ ', which
gives the mean aqueous resistance,

PE, 1 =0.995G, 1P (Al1)
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